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Abstract
The state of a two-dimensional random resistor network, resulting from the
simultaneous evolutions of two competing biased percolations, is studied in
a wide range of bias values. Monte Carlo simulations show that when the
external current I is below the threshold value for electrical breakdown, the
network reaches a steady state with nonlinear current–voltage characteristics.
The properties of this nonlinear regime are investigated as a function of different
model parameters. A scaling relation is found between 〈R〉/〈R〉0 and I/I0,
where 〈R〉 is the average resistance, 〈R〉0 the linear regime resistance and I0

the threshold value for the onset of nonlinearity. The scaling exponent is found
to be independent of the model parameters. A similar scaling behaviour is
also found for the relative variance of resistance fluctuations. These results
compare well with resistance measurements in composite materials performed
in the Joule regime up to breakdown.

1. Introduction and model

Electrical breakdown of disordered media has been widely studied over the last 20 years [1–10].
This is due to its relevant implications on material technology and on fundamental aspects re-
lated to the understanding of the response properties of disordered systems to high external
stresses [1,2]. It is well known that the application of a finite stress (electrical or mechanical)
to a disordered material generally implies a nonlinear response, which leads to a catastrophic
behaviour in the high stress limit [1, 2]. Percolation theory provides a powerful approach
for studying breakdown phenomena of disordered media [11, 12]. In this framework, several
models have been proposed to describe the electrical breakdown of granular metals and of
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conductor–insulator composites in terms of critical phenomena near the percolation thresh-
old [4–7]. Furthermore, the critical exponents characterizing these behaviours have been both
theoretically calculated and measured in several materials [1, 2, 4–7, 10]. Nevertheless, few
attempts have been made so far to describe the behaviour of disordered media over the full
range of applied stress [7,9]. The understanding of breakdown phenomena in the full dynami-
cal regime is thus unsatisfactory at the present time. On the other hand, important information
is expected from such a study, such as precursor effects, the role of disorder, the predictability
of breakdown, etc [7, 9].

The aim of this paper is to present a percolative model of sufficient generality to address the
above issues. To this purpose, we consider a random resistor network (RRN) [11] in which two
competing percolations are present, defect generation and defect recovery, which determine
the values of the elementary network resistances. Both processes are driven by an external
current and by the heat exchange between the network and the thermal bath. Monte Carlo
simulations are performed to explore the network evolution in a wide range of bias values.
A stationary state or an irreversible breakdown of the RRN can be reached depending on the
value of the applied current. By focusing on the steady state, we study the resistance and
the resistance noise properties. We found that the average network resistance and the relative
resistance noise scale with the ratio of the applied current to the current value corresponding
to the onset of nonlinearity. These results are discussed in connection with measurements in
composite materials and in conducting polymers [9, 13].

We consider a two-dimensional, square-lattice RRN of total resistance R, made of Ntot

resistors with resistance rn. We take a square geometry N × N , where N determines the
linear size of the network. A constant current I is applied through electrical contacts realized
by perfectly conducting bars on the left-hand and right-hand sides of the network. As a
consequence, a current in is flowing in the nth resistor. The RRN interacts with a thermal bath
at temperature T0 and the resistances rn are taken to depend linearly on the local temperature
Tn, according to

rn(Tn) = r0[1 + α(Tn − T0)] (1)

where r0 is the resistance value of the elementary resistor at the temperature T0 and α is the
temperature coefficient of the resistance. The local temperatures are calculated as in [10]:

Tn = T0 + A

[
rni

2
n +

B

Nneig

Nneig∑
l=1

(
rli

2
l − rni

2
n

)]
. (2)

In this expression, Nneig is the number of first neighbours of the nth resistor, the parameter
A, measured in (K/W), describes the heat coupling of each resistor with the thermal bath and
it determines the importance of Joule heating effects. The parameter B is taken to be equal
to 3/4 to provide a uniform heating in the perfect network configuration. We notice that
equation (2) implies an instantaneous thermalization of each resistor at the value Tn, and then,
by adopting equation (2), we are neglecting for simplicity time-dependent effects which are
discussed in [5].

In the initial state of the network, I = 0, Tn ≡ T0 and all the resistors are identical rn ≡ r0.
The evolution of the RRN arises from the presence of two competing percolations. The first
consists of generating fully insulating defects (broken resistors). This process occurs with
probability

WD = exp[−ED/kBTn] (3)

where ED is a characteristic activation energy and kB the Boltzmann constant [10]. The
second percolation consists of recovering the insulating defects. This process occurs with a
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Figure 1. Network evolution near the electrical breakdown. Different grey levels from black to
white correspond to increasing values of rn from 1 to 3 (�).

probability WR expressed as in equation (3) but with a different activation energy ER. As
a result of the competition between these two percolations, depending on the parameters
which specify the physical properties of the system and depending on the external conditions
(bias current and bath temperature), the RRN can reach a steady state or the percolation
threshold. In the first case, R fluctuates around its average value 〈R〉, while in the second
case, an irreversible breakdown occurs, i.e. R diverges due to the existence of at least one
continuous path of defects between the upper and lower sides of the network [11]. By
focusing on the effect of the external current, we define Ib as the greatest current value for
which the RNN is stationary. We notice that for biased percolation the following expression,
ER < ED + kBT ln[1 + exp(−ED/kBT0)], represents a necessary condition for the existence
of a steady state [14]. Monte Carlo simulations are performed according to the following
procedure:

(i) starting from the perfect lattice with given local currents and temperatures, in and Tn,

(ii) resistances rn are changed according to equation (1) and defects are generated with
probability WD;

(iii) the currents in are calculated by solving Kirchhoff’s loop equations; the local temperatures
are updated;

(iv) the temperature dependence of the resistances rn is again accounted for and defects are
recovered with probability WR;

(v) R, in and Tn are finally calculated and this procedure is iterated from (ii) until electrical
breakdown or steady state is achieved. In the last case the iteration runs long enough to
allow a fluctuation analysis to be performed. Each iteration step can be associated with
an elementary time step on an appropriate timescale (to be calibrated with experiments).

As reasonable values of the parameters, simulations have been performed by taking:
N = 75 (except when differently specified), T0 = 300 (K), α = 10−3 (K−1), A =
5 × 105 (K W−1), ED = 0.17 (eV). Several values of ER and r0 have been considered:
0.026 � ER � 0.16 (eV) and 1 � r0 � 10 (�). The values of the external current range
between 0.001 and 3 (A).
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2. Results

We show in figure 1 a picture of the RRN near the electrical breakdown. In this case we have
taken N = 45, r0 = 1 (�), ER = 0.10 (eV) and I = 0.5 (A), i.e. I > Ib = 0.45 (A). The
different levels of grey correspond to different values of rn. We can clearly see that, with
respect to the initial state (perfect network), the network has evolved to a disordered state
associated with the formation and growth of a channel of broken resistors elongated in the
direction perpendicular to the applied current. This kind of damage pattern reproduces well the
experimental pattern observed in metallic lines failed as a consequence of electromigration [15].
Typical evolutions of R are shown in figure 2 at increasing bias values. In this case N = 75
while all the other parameters are the same of figure 1. The thinner curves refer to the
steady state regime while the thicker curve refers to a RRN undergoing electrical breakdown
(I > Ib = 0.75). In the steady state two regimes can be identified: an ohmic regime (lower two
curves) and a nonlinear regime characterized by a significant increase of resistance (remaining
curves). By focusing on the steady state regime, we report in figure 3 the average resistance 〈R〉
as a function of the applied current. The different curves correspond to different values of r0, i.e.
to RRNs of different initial resistance, while the recovery activation energy is ER = 0.026 (eV).
Each value has been calculated by considering the time average on a single realization and
then making the ensemble average over 20 realizations. At low biases the average resistance
takes a constant value 〈R〉0 which represents the intrinsic linear response property of the
network (ohmic regime). When I is above a threshold value I0 (threshold for the nonlinearity
onset), 〈R〉 increases with bias until the applied current reaches the Ib value, above which
the RRN undergoes electrical breakdown. Thus, in the following, we indicate with 〈R〉b
the average value of R at I = Ib, i.e. the last stable value of the resistance. Figure 3 also
shows that by increasing r0 and thus the initial network resistance, both I0 and Ib decrease.
Precisely, we have found Ib ∼ R−δ

0 and I0 ∼ R−δ
0 with δ = 0.51 ± 0.01. Therefore the ratio

Ib/I0 = 28±1 is independent of the initial network resistance. Moreover, we have also found
〈R〉b/〈R〉0 = 1.85 ± 0.08.

The effect of the recovery activation energy on the steady state is shown in figure 4,
which reports the ratio 〈R〉/〈R〉0 as a function of the applied current for different values of
ER (in this case all the curves are obtained for r0 = 1 (�)). The overall behaviour is similar
to that shown in figure 3: an ohmic regime at low bias is followed by a nonlinear regime
for I > I0. Moreover, by increasing ER both I0 and Ib decrease and the stability region
is strongly reduced. Nevertheless, an important difference between the effect of varying the
initial network resistance and that of varying ER is that, in the last case, the ratio Ib/I0, exhibits
a significant dependence on ER, as shown in figure 5. To investigate the existence of scaling
relations and their universality, figure 6 reports the log–log plot of the relative variation of the
average resistance, (〈R〉 − 〈R〉0)/〈R〉0, as a function of the ratio I/I0 for different values of
r0 and ER. The plot shows that all these curves collapse onto a single one and that the relative
variation of 〈R〉 as a function of I/I0 exhibits a power law behaviour. We conclude that, the
average resistance follows the scaling relation

〈R〉
〈R〉0

= g(I/I0) g(I/I0) 	 1 + (I/I0)
θ (4)

with the scaling exponent θ = 2.1 ± 0.1 being independent of both the initial resistance of
the RRN and the recovery activation energy. Other simulations, performed on rectangular
networks, confirm the same value for θ . The quadratic dependence of 〈R〉 on I , found here,
can be understood in the spirit of mean-field theory when we consider that �R ≈ αR0�T

and �T ∝ AR0I
2. Moreover, recalling the above reported results concerning the ratio I/I0,
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Figure 2. Resistance as a function of time at increasing bias values. The thinner curves correspond
to the steady state regime and they are obtained, going from bottom to top, for I = 0.01, 0.05,
0.10, 0.35, 0.70, 0.75 (A). The thicker curve is obtained for I = 0.78 (A) and it corresponds to a
RRN undergoing electrical breakdown.
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Figure 3. Normalized average resistance versus external bias. We take ER = 0.026 and
ED = 0.167 (eV), while the value of r0 ranges between 1 and 10 �.

equation (4) explains the independence of the ratio 〈R〉b/〈R〉0 on the initial RRN resistance
(figure 3) and, by contrast, its significant dependence on ER, as shown in figure 4. All
these results well agree with recent measurements in the Joule regime of carbon high-density
polyethylene composites reported in [9].

The resistance fluctuations are then analysed for different values of ER and r0. Figure 7
reports the relative variance of resistance fluctuations, � ≡ 〈�R2〉/〈R〉2, as a function of
the external current. Curves 1, 2 and 3 (with full circles) show � for r0 = 1 (�) and
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Figure 4. Normalized average resistance versus external bias. We take r0 = 1 (�), ED =
0.167 (eV) while the values of ER range between 0.026 and 0.155 (eV).
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Figure 5. Plot of the ratio Ib/I0 as function of the recovery activation energy. The curve is a fit
with a power law Ib/I0 ∼ E−0.36

R .

ER = 0.060, 0.043, 0.026 (eV) respectively, while the curves belonging to set 3 are obtained
for ER = 0.026 (eV) and different values of r0. Figure 7 points out the existence of two
different noise regimes. The first regime occurs for I < I0, i.e. when Joule heating effects are
negligible. This noise arises from two random percolations and represents an intrinsic noise of
the RRN, depending only on the values of ED and ER [14]. The second regime occurs when
I > I0 and the value of � is found to become strongly dependent on the external current.
By plotting �/�0 as a function of I/I0 we have found that all the data of figure 7 collapse
onto a single curve, as shown in figure 8. Moreover, a power law behaviour is observed in
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Figure 6. Log–log plot of the relative variation of resistance versus I/I0. Data shown in this figure
are the same of those reported in figures 3 and 4.
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Figure 7. Relative variance of resistance fluctuations as a function of the external bias. Curves 1, 2,
3 refer to r0 = 1.0 (�) and ER = 0.060, 0.043, 0.026 eV, respectively. The five curves belonging
to set 3 are obtained with r0 = 1.0 (�) (full circles), 2.5 (�) (open squares), 5.0 (�) (full triangles),
7.5 (�) (open triangles), 10.0 (�) (full diamonds).

the pre-breakdown region. Therefore, we can conclude that in the pre-breakdown region the
relative variance of resistance fluctuations follows the scaling relation

�

�0
= f (I/I0) f (I/I0) 	 1 + (I/I0)

η (5)

where the scaling exponent is η = 4.1 ± 0.1. This value of η agrees with the values obtained
from electrical noise measurements in conducting polymers [13].

In conclusion, we have studied by Monte Carlo simulations the stationary regime of
RRNs resulting from the simultaneous evolutions of two competing percolations. The two
percolations consist of generating (recovering) fully insulating defects which are driven by an



2378 C Pennetta et al

0.10 1.00 10.00 100.00
I/Io

10
0

10
1

10
2

Σ/Σ0

Σ/Σ0 ~ (I/I0)
η 

Figure 8. Log–log plot of the relative variance of resistance fluctuations normalized to the same
quantity calculated in the linear regime versus I/I0. A power law fit is shown in the pre-breakdown
regime.

external current and by the heat exchange with a thermal bath. We have analysed the behaviour
of the average resistance and of the relative variance of resistance fluctuations over a wide range
of the applied current and as a function of different model parameters. We have found that
both these quantities follow a scaling relation in terms of the ratio between the applied current
and the current value corresponding to the nonlinearity onset. Both scaling exponents are
found to be independent of the model parameters. These results compare well with resistance
measurements in composite materials performed in the Joule regime up to breakdown [9] and
with noise measurements in conducting polymers [13].
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